Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof
نویسندگان
چکیده
We study fully nonlinear partial differential equations involving the determinant of the Hessian matrix of the unknown function with respect to a family of vector fields that generate a Carnot group. We prove a comparison theorem among viscosity suband supersolutions, for subsolutions uniformly convex with respect to the vector fields.
منابع مشابه
Comparison principles and Dirichlet problem for equations of Monge-Ampère type associated to vector fields∗
We study partial differential equations of Monge-Ampère type involving the derivates with respect to a family X of vector fields of Carnot type. The main result is a comparison principle among viscosity subsolutions, convex with respect to X , and viscosity supersolutions (in a weaker sense than usual), which implies the uniqueness of solution to the Dirichlet problem. Its assumptions include t...
متن کاملComparison principles for subelliptic equations of Monge-Ampère type
We present two comparison principles for viscosity suband supersolutions of Monge-Ampère-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.
متن کاملComparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type∗
We study fully nonlinear partial differential equations of Monge-Ampère type involving the derivates with respect to a family X of vector fields. The main result is a comparison principle among viscosity subsolutions, convex with respect to X , and viscosity supersolutions (in a weaker sense than usual), which implies the uniqueness of solution to the Dirichlet problem. Its assumptions include ...
متن کاملMaximum and Comparison Principles for Convex Functions on the Heisenberg Group
The purpose in this paper is to establish pointwise estimates for a class of convex functions on the Heisenberg group. An integral estimate for classical convex functions in terms of the Monge–Ampère operator det D2u was proved by Aleksandrov, see [3, Theorem 1.4.2]. Such estimate is of great importance in the theory of weak solutions for the Monge–Ampère equation, and its proof revolves around...
متن کاملAsymptotic Directions, Monge–Ampère Equations and the Geometry of Diffeomorphism Groups
In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curvature. Finally, we exhibit the common origin of the Monge–Ampère equations in 2D fluid dynamics and mass transport. Mathematics Subject Classificat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009